CSAPP-Datalab
labs系列的第一个lab,主要考查书中第二章的知识。挺烧脑的。。。
List
Name |
Description |
Rating |
Max ops |
bitCor (x, y) |
x^y using only ~ and & |
1 |
14 |
tmin() |
返回最小补码 |
1 |
4 |
isTmax(x) |
判断是否为补码最大值 |
1 |
10 |
allOddBits(x) |
判断补码所有奇数位是否都是1 |
2 |
12 |
negate(x) |
不使用- 实现-x |
3 |
5 |
isAsciDigit(x) |
判断x 是否是ASCII 码 |
3 |
15 |
conditional |
实现x ? y : z |
3 |
16 |
isLessOrEqual(x, y) |
x<=y |
3 |
24 |
logicalNeg(x)) |
计算!x 而不用! |
3 |
12 |
howManyBits(x) |
计算表达x 所需的最少位数 |
4 |
90 |
float_twice(uf) |
计算2.0*uf |
4 |
30 |
float_i2f(uf) |
计算(float) f |
4 |
30 |
float_f2i(uf) |
计算(int) f |
4 |
30 |
bitCor (x, y)
1
2
3
4
5
6
7
8
9
10
|
/*
* bitXor - x^y using only ~ and &
* Example: bitXor(4, 5) = 1
* Legal ops: ~ &
* Max ops: 14
* Rating: 1
*/
int bitXor(int x, int y) {
return ~(~x&~y)&~(x&y);
}
|
就像数电中的异或拆开一样。
tmin()
1
2
3
4
5
6
7
8
9
|
/*
* tmin - return minimum two's complement integer
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 4
* Rating: 1
*/
int tmin(void) {
return 1<<31;
}
|
最小的补码,正数位全为零,符号位为1。
isTmax(x)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
/*
* isTmax - returns 1 if x is the maximum, two's complement number,
* and 0 otherwise
* Legal ops: ! ~ & ^ | +
* Max ops: 10
* Rating: 2
*/
int isTmax(int x) {
int i=x+1;
x+=i;
x=~x;//get a zero only if x=0xfff..ff or 0x7ff..ff
i=!i;
x=x+i;
return !x;
}
|
7ffff...
的一个特性,其+1后的结果与原数的和为ffffff...
,而ffff...
也有这个特性,所以通过这个性质可以过滤其他数,取反之后为0000000...
。第二个性质,7ffff...
+1之后不为0,而ffffff...
+1后为0。通过这个性质来过滤ffffff...
allOddBits(x)
1
2
3
4
5
6
7
8
9
10
11
12
|
/*
* allOddBits - return 1 if all odd-numbered bits in word set to 1
* Examples allOddBits(0xFFFFFFFD) = 0, allOddBits(0xAAAAAAAA) = 1
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 12
* Rating: 2
*/
int allOddBits(int x) {
int m=0xAA+(0xAA<<8);
m=m+(m<<16);
return !((m&x)^m));
}
|
构造出奇数位全为1的数0xAAAAAAAA
,与x
相与取得其奇数位,再进行异或取反,相同为1,不同为0。
negate(x)
1
2
3
4
5
6
7
8
9
10
11
|
/*
* negate - return -x
* Example: negate(1) = -1.
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 5
* Rating: 2
*/
int negate(int x) {
x=~x+1;
return x;
}
|
isAsciiDigit(x)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
/*
* isAsciiDigit - return 1 if 0x30 <= x <= 0x39 (ASCII codes for characters '0' to '9')
* Example: isAsciiDigit(0x35) = 1.
* isAsciiDigit(0x3a) = 0.
* isAsciiDigit(0x05) = 0.
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 15
* Rating: 3
*/
int isAsciiDigit(int x) {
int A=x+(~0x39+1);//x-0x39<=0-->x+~0x39+1<=0-->(x+~0x39+1)>>31
int B=!((x+(~0x30+1))>>31);//x-0x30>=0-->x+~0x30+1>=0-->!((x+~0x30+1)>>31)
return B&((!A)|(A>>31));
}
|
conditional(x , y, z)
1
2
3
4
5
6
7
8
9
10
11
12
|
/*
* conditional - same as x ? y : z
* Example: conditional(2,4,5) = 4
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 16
* Rating: 3
*/
int conditional(int x, int y, int z) {
x=!!x;
x=~x+1;
return (x&y)|((~x)&z);
}
|
先将x转化为逻辑值。x为真时让x与y的运算等于y,x与z的运算为0.因为要保存数值,所以想到&操作。因为我们要保存所有位,所以取其相反数。取z的情况正好相反。
isLessOrEqual(x, y)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
/*
* isLessOrEqual - if x <= y then return 1, else return 0
* Example: isLessOrEqual(4,5) = 1.
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 24
* Rating: 3
*/
int isLessOrEqual(int x, int y) {
int A=(x>>31)&1;
int B=(y>>31)&1;
int C=A^B;
int D=((y+(~x+1))>>31)&1;
return (C&A)|(!C&!D);
}
|
不同符号的数相减会出现溢出,所以分为两种情况
- 符号不同,x符号为1时,条件为真。
- 符号相同,进行y-x,当且仅当符号位为0时,条件为真。
logicalNeg(x))
1
2
3
4
5
6
7
8
9
10
11
|
/*
* logicalNeg - implement the ! operator, using all of
* the legal operators except !
* Examples: logicalNeg(3) = 0, logicalNeg(0) = 1
* Legal ops: ~ & ^ | + << >>
* Max ops: 12
* Rating: 4
*/
int logicalNeg(int x) {
return (~(x|(~x+1))>>31)&1;
}
|
0的相反数是其本身~
howManyBits(x)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
/* howManyBits - return the minimum number of bits required to represent x in
* two's complement
* Examples: howManyBits(12) = 5
* howManyBits(298) = 10
* howManyBits(-5) = 4
* howManyBits(0) = 1
* howManyBits(-1) = 1
* howManyBits(0x80000000) = 32
* Legal ops: ! ~ & ^ | + << >>
* Max ops: 90
* Rating: 4
*/
int howManyBits(int x) {
int b16,b8,b4,b2,b1,b0;
int sign=x>>31;
x = (sign&~x)|(~sign&x);
b16 = !!(x>>16)<<4;
x = x>>b16;
b8 = !!(x>>8)<<3;
x = x>>b8;
b4 = !!(x>>4)<<2;
x = x>>b4;
b2 = !!(x>>2)<<1;
x = x>>b2;
b1 = !!(x>>1);
x = x>>b1;
b0 = x;
return b16+b8+b4+b2+b1+b0+1;
}
|
如果是一个正数,则需要找到它最高的一位(假设是n)是1的,再加上符号位,结果为n+1;如果是一个负数,则需要知道其最高的一位是0的(例如4位的1101和三位的101补码表示的是一个值:-3,最少需要3位来表示)。
float_twice(uf)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
/*
* float_twice - Return bit-level equivalent of expression 2*f for
* floating point argument f.
* Both the argument and result are passed as unsigned int's, but
* they are to be interpreted as the bit-level representation of
* single-precision floating point values.
* When argument is NaN, return argument
* Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while
* Max ops: 30
* Rating: 4
*/
unsigned float_twice(unsigned uf) {
int exp=(uf&0x7f800000)>>23;
int sign=uf&(1<<31);
if(exp==0) return (uf<<1)|sign;
if(exp==255) return uf;
exp++;
if(exp==255) return 0x7f800000|sign;
return (exp<<23|sign)|(uf&0x807fffff);
}
|
*2
只需要对其exp字段进行操作,并根据浮点数的不同情况返回数值。
float_i2f(uf)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
/*
* float_i2f - Return bit-level equivalent of expression (float) x
* Result is returned as unsigned int, but
* it is to be interpreted as the bit-level representation of a
* single-precision floating point values.
* Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while
* Max ops: 30
* Rating: 4
*/
unsigned float_i2f(int x) {
unsigned ux, mask, temp, e, sign = 0;
int E = 0, count;
if(!x) return 0;
if(x&0x80000000){
ux = ~x+1;
sign = 0x80000000;
}
else ux=x;
temp = ux;
while(temp){
E += 1;
temp = temp>>1;
}
ux = ux&(~(1<<(E-1)));
e = E+126;
if(E<=24){
ux = ux<<(24-E);
}else{
count = 0;
while(E>25){
if(ux&0x01) count+=1;
ux = ux>>1;
E -= 1;
}
mask = ux&0x01;
ux = ux>>1;
if(mask){
if(count) ux+=1;
else{
if(ux&0x01) ux+=1;
}
}
if(ux>>23){
e+=1;
ux = ux&0x7FFFFF;
}
}
return sign+(e<<23)+ux;
}
|
将补码转化为浮点数编码步骤:
-
将补码转化为无符号数,并根据补码的符号来设置浮点数的符号位
-
因为补码一定是大于等于0的数,所以要么为0,要么为规格化数。如果是规格化数,首先统计除了最高有效位外一共需要几位,得到的就是E,然后通过$ E = e + 1-2^{k-1}$得到解码位为 $e=E-1+2^{k-1}$。
-
无符号数后面E位就是尾数部分,但是需要判断该部分是否23位,如果小于23位,直接将其左移填充;如果大于23位,需要对其进行舍入:
-
- 如果是中间值,就需要向偶数舍入
- 如果不是中间值,就需要向最近的进行舍入
float_f2i(uf)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
/*
* float_f2i - Return bit-level equivalent of expression (int) f
* for floating point argument f.
* Argument is passed as unsigned int, but
* it is to be interpreted as the bit-level representation of a
* single-precision floating point value.
* Anything out of range (including NaN and infinity) should return
* 0x80000000u.
* Legal ops: Any integer/unsigned operations incl. ||, &&. also if, while
* Max ops: 30
* Rating: 4
*/
int float_f2i(unsigned uf) {
int s_ = uf>>31;
int exp_ = ((uf&0x7f800000)>>23)-127;
int frac_ = (uf&0x007fffff)|0x00800000;
if(!(uf&0x7fffffff)) return 0;
if(exp_ > 31) return 0x80000000;
if(exp_ < 0) return 0;
if(exp_ > 23) frac_ <<= (exp_-23);
else frac_ >>= (23-exp_);
if(!((frac_>>31)^s_)) return frac_;
else if(frac_>>31) return 0x80000000;
else return ~frac_+1;
}
|
将浮点数转化为补码步骤:
- 首先假设浮点数为规格化数,则 $E=e-bias$得到指数部分,我们知道如果$E<0$,则计算出来的结果一定是小数(包括非规格化数),此时能直接舍入到0;如果 $E>31$,表示至少要将尾数部分右移31位,此时一定会超过补码的表示范围,所以直接将其溢出。
- 可通过最低23位得到尾数部分
- 尾数部分需要自己在最高有效位添1,如果是负数,则补码的最高位为1,就要求其对应的无符号编码最高位不为1,否则是负溢出溢出;如果是整数,则补码的最高位为0,就要求其编码的最高位为0,否则是正溢出。
必须纪念一下~~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
niebelungen@LAPTOP-xxxxxxxx:/mnt/c/download/datalab-handout$ ./btest
Score Rating Errors Function
1 1 0 bitXor
1 1 0 tmin
2 2 0 isTmax
2 2 0 allOddBits
2 2 0 negate
3 3 0 isAsciiDigit
3 3 0 conditional
3 3 0 isLessOrEqual
4 4 0 logicalNeg
4 4 0 howManyBits
4 4 0 float_twice
4 4 0 float_i2f
4 4 0 float_f2i
Total points: 37/37
|